Skip to content

Hadoop序列化

1. 序列化概述

  1. 什么是序列化
    序列化就是把内存中的对象,转换成字节序列(或其他数据传输协议)以便于存储到磁盘(持久化)和网络传输。 反序列化就是将收到字节序列(或其他数据传输协议)或者是磁盘的持久化数据,转换成内存中的对象。
  2. 为什么要序列化 一般来说,"活的"对象只生存在内存里,关机断电就没有了。而且"活的"对象只能由本地的进程使用,不能被发送到网络上的另外一台计算机。然而序列化可以存储"活的"对象,可以将"活的"对象发送到远程计算机。
  3. 为什么不用Java的序列化
    Java的序列化是一个重量级序列化框架(Serializable),一个对象被序列化后,会附带很多额外的信息(各种校验信息,Header,继承体系等),不便于在网络中高效传输。所以,Hadoop自己开发了一套序列化机制(Writable)。
  4. Hadoop序列化特点
    (1)紧凑:高效使用存储空间,不用繁琐的校验等信息
    (2)快速:读写数据的额外开销小。信息少了传输负担变小
    (3)互操作:支持多语言的交互,比如可以C/C++反序列化

2. 自定义bean对象实现序列化接口

实现bean对象序列化步骤如下7步:

  1. 必须实现org.apache.hadoop.io.Writable接口:
  2. 反序列化时,需要反射调用空参构造函数,所以必须有空参构造
java
public FlowBean() { // 比如当前类名是FlowBean
    super();
}
  1. 重写序列化方法
java
@Override
public void write(DataOutput out) throws IOException {
    out.writeLong(upFlow);
    out.writeLong(downFlow);
    out.writeLong(sumFlow);
}
  1. 重写反序列化方法
java
@Override
public void readFields(DataInput in) throws IOException {
    upFlow = in.readLong();
    downFlow = in.readLong();
    sumFlow = in.readLong();
}
  1. 注意反序列化字段的顺序和序列化的顺序完全一致
  2. 要想把结果显示在文件中,需要重写toString(),可用"\t"分开,方便后续用。
  3. 如果需要将自定义的bean放在key中传输,则还需要实现Comparable接口,因为MapReduce框中的Shuffle过程要求对key必须能排序。
java
@Override
public int compareTo(FlowBean o) {
    // 倒序排列,从大到小
    return this.sumFlow > o.getSumFlow() ? -1 : 1;
}

3. 序列化案例实操

统计每一个手机号耗费的总上行流量、总下行流量、总流量
编写可序列化对象PhoneFlowBean:

java
//1 继承Writable接口
public class PhoneFlowBean implements Writable {
    //2 提供无参构造
    public PhoneFlowBean() {
        super();
    }

    private int upFlow;

    private int downFlow;

    private int sumFlow;

    //3 提供三个参数的getter和setter方法
    public int getUpFlow() {
        return upFlow;
    }

    public void setUpFlow(int upFlow) {
        this.upFlow = upFlow;
    }

    public int getDownFlow() {
        return downFlow;
    }

    public void setDownFlow(int downFlow) {
        this.downFlow = downFlow;
    }

    public int getSumFlow() {
        return sumFlow;
    }

    public void setSumFlow(int sumFlow) {
        this.sumFlow = sumFlow;
    }

    //4 实现序列化和反序列化方法,注意顺序一定要保持一致
    @Override
    public void write(DataOutput out) throws IOException {
        out.writeInt(upFlow);
        out.writeInt(downFlow);
        out.writeInt(sumFlow);
    }

    @Override
    public void readFields(DataInput in) throws IOException {
        this.upFlow = in.readInt();
        this.downFlow = in.readInt();
        this.sumFlow = in.readInt();
    }

    //5 重写ToString
    @Override
    public String toString() {
        return this.upFlow + "\t\t" + this.downFlow + "\t\t" + this.sumFlow;
    }
}
java
PhoneFlowBean phoneFlow = new PhoneFlowBean();
Text phoneText = new Text();
@Override
protected void map(LongWritable key, Text value, Mapper<LongWritable, Text, Text, PhoneFlowBean>.Context context) throws IOException, InterruptedException {
    //1 获取一行数据,转成字符串
    String lineStr = value.toString();
    //2 切割数据
    String[] split = lineStr.split("\t");
    //3 抓取我们需要的数据:手机号,上行流量,下行流量
    String phoneNum = split[1];
    int upFlow = Integer.parseInt(split[split.length - 3]);
    int downFlow = Integer.parseInt(split[split.length - 2]);
    //4 封装outK outV
    phoneFlow.setUpFlow(upFlow);
    phoneFlow.setDownFlow(downFlow);
    phoneFlow.setSumFlow(upFlow+downFlow);
    phoneText.set(phoneNum);
    //5 写进outK outV
    context.write(phoneText, phoneFlow);
}
java
PhoneFlowBean phoneFlowBean = new PhoneFlowBean();

@Override
protected void reduce(Text key, Iterable<PhoneFlowBean> values, Reducer<Text, PhoneFlowBean, Text, PhoneFlowBean>.Context context) throws IOException, InterruptedException {
    int upFlowTotal = 0;
    int downFlowTotal = 0;
    int sumFlowTotal = 0;
    //1 遍历values,将其中的上行流量,下行流量分别累加
    for (PhoneFlowBean value : values) {
        upFlowTotal+= value.getUpFlow();
        downFlowTotal+= value.getDownFlow();
        sumFlowTotal+= value.getSumFlow();
    }
    //2 封装outKV
    phoneFlowBean.setSumFlow(sumFlowTotal);
    phoneFlowBean.setUpFlow(upFlowTotal);
    phoneFlowBean.setDownFlow(downFlowTotal);
    //3 写进outK outV
    context.write(key, phoneFlowBean);
}
java
public static void main(String[] args) throws IOException, InterruptedException, ClassNotFoundException {
    //1 获取job对象
    Configuration conf = new Configuration();
    Job job = Job.getInstance(conf, "phoneFlowCount");
    //2 关联本Driver类
    job.setJarByClass(PhoneFlowDriver.class);
    //3 关联Mapper和Reducer
    job.setMapperClass(PhoneFlowMapper.class);
    job.setReducerClass(PhoneFlowReducer.class);
    //4 设置Map端输出KV类型
    job.setMapOutputKeyClass(Text.class);
    job.setMapOutputValueClass(PhoneFlowBean.class);
    //5 设置程序最终输出的KV类型
    job.setOutputKeyClass(Text.class);
    job.setOutputValueClass(PhoneFlowBean.class);
    //6 设置程序的输入输出路径
    FileInputFormat.setInputPaths(job, new Path("D:\\BaiduNetdiskDownload\\phone_data.txt"));
    FileOutputFormat.setOutputPath(job, new Path("E:\\output\\"));
    //7 提交Job
    boolean flag = job.waitForCompletion(true);
    System.exit(flag ? 1 : 0);
}